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Abstract
We apply a simple observation to show that the generalized Dicke states can be
determined from their reduced subsystems. In this framework, it is sufficient to
calculate the expression for only the diagonal elements of the reduced density
matrices in terms of the state coefficients. We prove that the correlation in
generalized Dicke states

∣∣GD
(�)
N

〉
can be reduced to 2�-partite level. Application

to the quantum marginal problem is also discussed.

PACS numbers: 03.67.−a, 03.65.Ud, 03.67.Mn

1. Introduction

Entanglement is one of the most fascinating non-classical features of quantum theory which
has been harnessed for various practical applications. Although bipartite entanglement is well
understood, gaining insight into multipartite entanglement is still quite a challenge. There are
various perspectives to study entanglement at the multiparty level such as its characterization
by means of LOCC, its ability to reject local realism and hidden variable theories, etc. A
particular interesting point of view is that of ‘parts and whole’. This approach basically deals
with the question: how much knowledge about the quantum system can be acquired from
that of its subsystems? To be precise, it asks whether an unknown state can be determined
uniquely if all its reduced density matrices (RDMs) are specified. In other words, this means
whether higher order correlations are determined by lower order ones. It turns out that the
most entangled states are the ones which cannot be determined from their RDMs.

The determination of a state from its RDMs implies that the correlation present in
the state is reducible to lower order ones. In an interesting work [1] it was shown that
except the GHZ class (a|000〉 + b|111〉), all 3-qubit pure states are determined by their 2-qubit
RDMs. This was further generalized [2] to the N-qubit case to show that GHZ is the most
entangled class of states. In these works, the knowledge of (N −1)-party RDMs was employed
to characterize the N-party state. However, in the general scenario there may exist states which
can be determined by less than (N − 1)-party RDMs, i.e. a generic correlation can be reduced
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beyond the (N − 1)-partite level. For example, we have recently shown [3] that the N-qubit
W -class of states is determined by just their bipartite RDMs.

Though some partial progress has been made in this direction [4], there is no general
technique to know which class of states can be determined by K-partite RDMs for K < N −1.
Answering this question will lead to the classification of quantum states in terms of various
kinds of reducible correlations that they can exhibit [1–3]. A natural way to solve the problem
is to determine all the RDMs from the given state and from an arbitrary state (which is
supposed to have the same set of RDMs) and then to compare the corresponding RDMs. But
this is practically very difficult as we need to solve several second-degree equations involving
complex numbers.

In this paper we provide some interesting examples of states which can be determined by
their K-partite RDMs for K < N − 1. In particular, we shall consider the Dicke states which
are genuinely entangled and have been widely studied from both theoretical and experimental
point of views [5]. The simplest Dicke state is the W -state which was studied at the qubit
level recently [3]. In the present work, as a first step, we shall extend this result to arbitrary
d-dimensional (i.e. N-qudit) W -state. Next, we shall focuss on the N-qubit Dicke states and
study their reducible correlations. This result is further generalized to d-dimensions. Another
interesting application of our technique that would be mentioned is the quantum marginal
problem.

Our proof is based on the simple fact that the RDMs of a pure state can be constructed
only from the expressions of the diagonal elements. This facilitates easy computation of
the RDMs. In addition, if some of the diagonal entries are zero, then this constraints some
diagonals of the arbitrary state to vanish, thereby reducing the number of unknowns. So first,
let us rewrite some known observations and notational conventions to construct RDMs, in a
slightly different way, for later convenience.

Observation 1. To calculate the reduced density matrix from a generic pure state, it is
sufficient to calculate the expression for diagonal elements in terms of the state coefficients.
All off-diagonal elements will be obtained from these expressions.

A density matrix being Hermitian can be identified by its upper-half elements aij∀i � j .
So we do not need to calculate the lower-half elements.

Using the ‘lexicographically ordered’ basis {|00 . . . 0〉, |00 . . . 1〉, . . . , |00 . . . d − 1〉, . . . ,
|d − 1d − 1 . . . d − 1〉} of C

d⊗N
, an N-qudit pure state |ψ〉dN (i.e. an N-partite pure quantum

state where each of the parties has a d-level system) can be expressed as

|ψ〉dN =
dN −1∑
i=0

ci |DN(i)〉,
dN −1∑
i=0

|ci |2 = 1, (1)

where DN(x) ≡ ‘Representation of the decimal number x in an N-bit string in d-base number
system’. To have a grip on the coefficient corresponding to a basis vector, we are using a
d-base number system to represent the basis vector so that the suffix of its coefficient can be
obtained by converting it into decimal number and vice versa. (Note that for d � 11, we need
at least two bits (digit) to represent d − 1 in a decimal number system. But we wish to restrict
ourselves to using one bit to represent one level. So we are using the d-base number system
to represent the bases. That is why a ‘bar’ is used over d − 1 to indicate that it is of the d-base
number system (and so it consists of one bit).)

Throughout the discussion, we will use the d-base number system to represent only the
bases and decimal numbers elsewhere. However, when there is no ambiguity, we will write
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s1 s2 sM

1N id -1Nd - 2N id - N Nd -

M

MN id -

(a) (b)

t1 t2 tM

1N id -1Nd - 2N id - N Nd -

M

MN id -

Figure 1. Least suffix (or the first term) in rij is ck0 c̄l0 , where (a) k0 = ∑M
j=1 sj · dN−ij and

(b) l0 = ∑M
j=1 tj · dN−ij .

|i〉 instead of |DN(i)〉—it should always be understood that the bases are in the d-base number
system.

Now let us calculate the M-partite marginal (RDM) ρ
i1i2...iM
ψ = T r

(|ψ〉dN 〈ψ |), where the
trace is taken over the remaining N−M parties. Clearly, it will be a matrix of order dM × dM .
So, retaining only the upper-half entries, we can write

ρ
i1i2...iM
ψ =

dM−1∑
i=0

dM−1∑
j=i

rij |DM(i)〉〈DM(j)|. (2)

Since the RDM is obtained by tracing over N−M parties (the space of these parties has
dimension dN−M ), each rij will be a sum of dN−M number of terms each of which is of the

form ckc̄l . Thus, rij = ∑dN−M−1
p=0 ckp

c̄lp . To get the expression of rij (i.e. to see explicitly
which ck’s and cl’s will appear in the sum), let us fix one i and one j . Let DM(i) = s1s2 . . . sM

and DM(j) = t1t2 . . . tM . In an N-bit string, let us now put the sj’s at ijth places respectively.
Then the suffixes k’s will be obtained by converting the N-bit d-base numbers, obtained by
filling all the remaining N−M places of the above string arbitrarily with 0, 1, 2, . . . , d − 1,
into decimal numbers. For an illustration, let k0 be the decimal number obtained by converting
the N-bit d-base number having sj fixed at the ijth place (∀j = 1(1)M) and zero at all the
remaining N−M places (see figure 1 for illustration). Then k0 = ∑M

j=1 sj · dN−ij . Similarly,

let l0 = ∑M
j=1 tj · dN−ij . Then the first term (ordering in suffixes appear) of the sum in the

expression of rij will be ck0 · cl0 . In a similar way other ckp
· clp (p = 0(1)(dN−M − 1))

terms can be calculated. For the last term, which is the term with highest suffix, we
have kdN−M−1 = k0 + (d − 1)

∑N
j=1;j �=i1,i2,...,iM

dN−j . Note that rii = ∑dN−M

p=0 |ckp
|2 and

rjj = ∑dN−M

p=0 |clp |2. Since rij = ∑dN−M

p=0 ckp
· clp , it follows that each off-diagonal element rij

can be obtained by summing the products of corresponding complex numbers appearing in
the expression of rii and conjugate of the complex numbers appearing in the expression of rjj.
Hence, it is sufficient to calculate the expression for only the diagonal elements.

Remark 1. If we start with a mixed state [rij ]d
N−1

j�i=0 and we wish to calculate an RDM

[Rij ]d
M−1

j�i=0, following the same procedure, it can be shown that if Rii = ∑dM−1
s=0 r(ks )(ks ) and

Rjj = ∑dM−1
s=0 r(ls )(ls ), then Rij = ∑dM−1

s=0 r(ks )(ls ). So Rii = 0 would imply r(ks )(j) = 0 ∀s, j !
Thus, it is always helpful to calculate first the expression of the diagonal elements (and compare
them).

We shall now apply the above observation to arrive at our main results. As a natural
extension of the work on N-qubit W -state [3], first we shall consider the generalized d-
dimensional W -state. This would also serve as a good demonstration of the technique and be
useful in understanding the proof for the generalized Dicke states.

3



J. Phys. A: Math. Theor. 42 (2009) 462003 Fast Track Communication

2. N-qudit generalized W -state

The N-qudit generalized W -state is defined as [6]

|W 〉dN =
d−1∑
i=1

(a1i |i0 . . . 00〉 + · · · + ani |00 . . . 0i〉). (3)

However, we will write this state in our notation as

|W 〉dN =
N−1∑
i=0

d−1∑
j=1

wjdi |DN(jdi)〉,
N−1∑
i=0

d−1∑
j=1

|wjdi |2 = 1. (4)

Theorem 1. N-qudit generalized W -states are determined by their bipartite marginals.

We shall prove this by showing that there does not exist any other N-qudit density matrix
having the same bipartite marginals except

|W 〉dN 〈W | =
N−1∑
i=0

d−1∑
j=1

d−1∑
k=j

wjdi w̄kdi |DN(jdi)〉〈DN(kdi)|

+
N−1∑
i=0

d−1∑
j=1

N−1∑
l=i+1

d−1∑
m=1

wjdi w̄jdl |DN(jdi)〉〈DN(mdl)|. (5)

(Note that though the above expression looks rather cumbersome, the matrix form can be
easily visualized as there are non-zero elements only at (jdi + 1, kdl + 1) positions where
j, k = 1(1)(d − 1); i, l = 0(1)(N − 1) and jdi � kdl , since we are considering only the
upper-half elements. These elements are the coefficients of |DN(jdi)〉〈DN(kdl)| and are given
by wjdi w̄kdl .)

Proof.

(1) Each bipartite marginal ρJK
W will be a matrix of order d2 ×d2 where J ∈ {1, 2, . . . , N −1}

and K ∈ {2, 3, . . . , N}. As discussed earlier, to determine ρJK
W , we need to find the

expressions of the d2 diagonal elements of ρJK
W , i.e. the coefficients of |ij 〉〈ij |∀i, j =

0(1)(d − 1). (Note that, while in the bases, i, j should be understood as d-base numbers).
Now each basis state in (4) has exactly one non-zero entry (rather ‘bit’) with value

1 to d − 1. So there will be no basis term |ij 〉〈ij | of ρJK
W having both i, j as non-zero

numbers. Therefore, the coefficient of |ij 〉〈ij | in ρJK
W should be zero ∀i, j = 1(1)(d −1).

Hence, we need to consider only the coefficients of |0i〉〈0i| and |i0〉〈i0| ∀i = 0(1)(d −1).
Again, for i �= 0, there is exactly one basis state in (4) containing ‘i’ at the Jth place

(from left to right) having the coefficient widN−J . Therefore, the coefficient of |i0〉〈i0|
is |widN−J |2. Similarly, the coefficient of |0i〉〈0i| in ρJK

W is |widN−K |2 ∀i = 1(1)(d − 1).
From normalization (T r(ρJK

W ) = 1), the coefficient of |00〉〈00| in ρJK is obtained as

1 −
d−1∑
i=1

(|widN−J |2 + |widN−K |2).

We know that the non-diagonal terms (the coefficients of |0i〉〈0j |, |0i〉〈j0| and
|i0〉〈j0|; i �= j ) will be determined from the above expressions of the diagonal terms.
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Thus,

ρJK
W =

(
1 −

d−1∑
i=1

(|widN−J |2 + |widN−K |2)
)

|00〉〈00| +
d−1∑
i=1

d−1∑
j=i

widN−K w̄jdN−K |0i〉〈0j |

+
d−1∑
i=1

d−1∑
j=1

widN−K w̄jdN−J |0i〉〈j0| +
d−1∑
i=1

d−1∑
j=i

widN−J w̄jdN−J |i0〉〈j0|. (6)

(2) Now let us suppose that there exists an N-qudit density matrix (possibly mixed, hence the
subscript M)

ρ12...N
M =

dN −1∑
i=0

dN −1∑
j=i

rij |DN(i)〉〈DN(j)| (7)

which has the same bipartite marginals as |W 〉dN . Here rii � 0 ∀i = 0(1)(dN − 1),
since the diagonal elements of a positive semi-definite (PSD) matrix are non-negative.
(If possible let in a PSD matrix A, a diagonal element di < 0. Then taking
|ψ〉 = [0, 0, . . . , 0, 1, 0, . . . , 0]T , we have 〈ψ |A|ψ〉 = dii < 0, a contradiction that
A is PSD.)

We first wish to calculate the diagonal elements of the bipartite marginal ρJK
M of

ρ12...N
M . Each diagonal element of ρJK

M is the sum of the dN−2 number of diagonal
elements rss of ρ12...N

M . Out of the d2 number of diagonal elements (coefficients of
|ij 〉〈ij |∀i, j = 0(1)(d − 1)) of ρJK

M , let us first calculate the coefficient of |ij 〉〈ij |∀i, j =
1(1)(d − 1). To see explicitly which rss’s will appear in the sum, we observe that the
suffixes s will vary over the decimal numbers obtained by converting the N-bit d-base
numbers having i fixed at Jth and j fixed at Kth places and arbitrarily 0, 1, . . . , d − 1
at the remaining (N − 2) places. Hence, the terms rss’s for the suffixes s = 0 and
s = k · dl−1, k = 1, 2, . . . , (d − 1); l = 1, 2, . . . , N, will not appear in the expression
(sum) of coefficient of |ij 〉〈ij | in ρJK

M for any J,K as for these s,DN(s) can have at most
one non-zero entry (but we need at least two).

(3a) As can be seen from equation (6), there is no term |ij 〉〈ij | for ij �= 0 in ρJK
W . Therefore,

the coefficient of |ij 〉〈ij | for ij �= 0 in ρJK
M should vanish. Since these coefficients

are sum of non-negative rss’s, each rss appearing there should individually be zero.
Therefore, from step (2), the only non-zero diagonal elements of ρ12...N

M are rii for
i = 0 and i = j · dk−1∀j = 1(1)(d − 1), k = 1(1)N .

(3b) Next comparing the coefficient of |0i〉〈0i| from ρJK
W and ρJK

M , we get r(idN−K)(idN−K) =
|widN−K |2 for all i = 1(1)(d − 1). Similarly, comparing the coefficient of |i0〉〈i0|,
we get r(idN−J )(idN−J ) = |widN−J |2 for all i = 1(1)(d − 1). Since these results
hold for all possible (parties) J and K, we can write them in combined form as
r(jdi )(jdi ) = |wjdi |2∀j = 1(1)(d − 1), i = 0(1)(N − 1).

(3c) Finally, from the normalization condition
∑dN −1

i=0 rii = 1 = ∑N−1
i=0

∑d−1
j=1 |wjdi |2, we get

r00 = 0. Thus, collecting the results of steps 3a and 3b it follows that

r(jdi )(jdi ) = |wjdi |2, ∀j = 1(1)(d − 1), i = 0(1)(N − 1), (8)

and all other rii in ρ12...N
M are zero.

(4) Now we will use the fact that if a diagonal element of a PSD matrix is zero, then all
elements in the row and column containing that element should be zero [7]. Hence, from
the result of step 3c it follows that ρ12...N

M has non-zero elements only at (jdi + 1, kdl + 1)

positions where j, k = 1(1)(d − 1); i, l = 0(1)(N − 1) and jdi � kdl . These elements
are the coefficients of |DN(jdi)〉〈DN(kdl)| and are given by r(jdi )(kdl ). Therefore, ρ12...N

M

5
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has the same form as |W 〉dN 〈W | given in (5). Moreover, from (8), they have the same
diagonal elements.

(5) The non-diagonal elements of ρ12...N
M are at (jdi + 1, kdl + 1) places with jdi < kdl .

Now, jdi < kdl may happen in two ways: either i < l or j < k (when i = l). For i < l,
the non-diagonal element at (jdi + 1, kdl + 1) is found to be wjdi w̄kdl by comparing the
coefficients of |0j 〉〈k0| from ρ

(N−l)(N−i)
M and ρ

(N−l)(N−i)
W . For i = l (and hence j < k),

the same can be achieved by comparing the coefficients of |0j 〉〈0k| from ρ
J(N−i)
M and

ρ
J(N−i)
W with any J �= i. Thus, r(jdi )(kdl ) = wjdi w̄kdl and hence ρ12...N

M = |W 〉dN 〈W |. �

3. N-qubit generalized Dicke states

The generalized Dicke states are defined by∣∣GD
(�)
N

〉 =
∑

i

ai |i〉 (9)

where i = |i1i2 . . . iN 〉 and the sum varies over all permutations of � number of 1 and
N − � number of 0. When all coefficients are equal, they are known as Dicke states
which have many interesting properties such as permutational invariance, robustness against
decoherence, measurement and particle loss. Some important applications of Dicke states
include telecloning, quantum secret sharing, open-destination teleportation and quantum
games [8]. In particular, implementation and various interesting applications of W -states
and their connection with Dicke states have been studied in [9]. Thus, Dicke states serve as a
good test bed for exploring multiparty correlations.

Let us first write the above state in (9) as (to have a grip on the coefficients)

∣∣GD
(�)
N

〉 =
N−1∑

i1>i2>...>i�=0

a2i1 +2i2 +···+2i� |BN(2i1 + 2i2 + · · · + 2i� )〉 (10)

where BN(x) is the binary representation of the decimal number x in an N-bit string and ai’s
are arbitrary non-zero complex numbers satisfying the normalization condition.

Retaining only the upper-half elements, we can write∣∣GD
(�)
N

〉〈
GD

(�)
N

∣∣ =
∑
i�j

gij |BN(i)〉〈BN(j)| (11)

where gij = ai āj and i, j vary over the decimal numbers obtained by converting the N-bit
binary numbers having � number of 1 (and N−� numbers of 0). In matrix form

∣∣GD
(�)
N

〉〈
GD

(�)
N

∣∣
will have non-zero entries (gij) only at (i + 1, j + 1) positions.

Since 1 � � � N − 1, considering the entanglement, it is sufficient to take � �
⌊

N
2

⌋ =
integral part of N

2 , as the states corresponding to other �’s are LU-equivalent to these states.
Any property of these latter states will follow from the corresponding former states obtained
by changing 0 and 1 throughout the bases. For example, the two classes

∣∣GD
(N−2)
N

〉
and∣∣GD

(2)
N

〉
have the same property. We shall now prove an interesting property of these states.

Theorem 2. For 1 � � <
⌊

N
2

⌋
, the generalized Dicke state

∣∣GD
(�)
N

〉
is uniquely determined

by its 2�-partite marginals.

Note that we have excluded the case � = ⌊
N
2

⌋
. The reason for this exclusion will be

described later. We will prove this theorem in two parts—firstly we shall show that if any
density matrix has the same (�+1)-partite marginals as those of

∣∣GD
(�)
N

〉
, then it must share the

6
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same diagonal elements with
∣∣GD

(�)
N

〉〈
GD

(�)
N

∣∣. But there will be some (off-diagonal) elements
in a general density matrix which will never appear in any (� + 1)-partite marginal. So, to
include these elements, we have to consider RDMs of more parties. In the second part we will
show that it is sufficient to consider the 2�-partite marginals to prove the uniqueness (i.e. the
two matrices share the same off-diagonals).

Proof.

(1) If possible, let there exists an N-qubit density matrix (possibly mixed)

ρ12...N
M =

2N−1∑
i=0

2N −1∑
j=i

rij |BN(i)〉〈BN(j)| (12)

having the same (� + 1)-partite marginals as those of
∣∣GD

(�)
N

〉
. We shall prove that ρ12...N

M

and
∣∣GD

(�)
N

〉〈
GD

(�)
N

∣∣ share the same diagonals.
(2) We will first consider the diagonal elements of RDMs. Since there is exactly � number of

non-zero entry (each is 1) in every basis term of
∣∣GD

(�)
N

〉
, the coefficient of

|i1i2 . . . i�+1〉〈i1i2 . . . i�+1|
in any (� + 1)-partite marginal should be zero in which every ik is 1. This constraints the
form of ρ12...N

M in equation (12) to have some coefficients (rij) vanishing. In (12), only
those rij will be non-zero for which both of BN(i) and BN(j) have at most � number of 1.
We shall now show that only those rii in (12) are non-zero for which BN(i) has exactly �

number of 1.
(2a) Let us consider the coefficient of |i1i2 . . . i�+1〉〈i1i2 . . . i�+1| where � number of ij’s is 1

and only one is zero, in the RDM of some parties J1, J2, . . . , J�+1. There is exactly
one basis term in

∣∣GD
(�)
N

〉
having ik at the Jkth place, with the coefficient ai where

i = 2N−J�+1 + · · · + 2N−J1 . So, when the RDM is calculated from
∣∣GD

(�)
N

〉
, the coefficient

is gii = |ai |2. Again, there is exactly one non-zero rii in (12) such that BN(i) has ik at the
Jkth place (since BN(i) can have at most � number of 1, in order for rij �= 0). Therefore,
comparing the coefficients (of this term), rii = gii . Considering all permutations of this
term and all possible set of (� + 1) number of parties, it follows that rii = dii , for all
decimal i so that BN(i) has � number of 1.

(2b) Now we will show that all other rii, corresponding to which BN(i) has less than � number
of 1, should be 0. First consider those rii’s corresponding to which BN(i) has (� − 1)

number of 1. Then comparing the coefficients of |i1i2 . . . i�+1〉〈i1i2 . . . i�+1| where (� − 1)

number of ij’s are 1, from the RDMs (considering all possible set of parties and using
the result of step (a) above), we get rii = 0. Similarly, all other rii’s, corresponding to
which |BN(i)〉 has less than � number of 1, should be zero. Finally from normalization( ∑

rii = ∑
gii = 1

)
, it follows that r00 = 0.

Thus, collecting the results of (a) and (b) it follows that ρ12...N
M in (12) reduces to the

same form as
∣∣GD

(�)
N

〉〈
GD

(�)
N

∣∣ in (11) and they have the same diagonal elements rii = gii .
The only remaining task to prove the uniqueness is to show that they have the same
non-diagonal elements too.

(3) Consider a non-diagonal element rij with i = | . . . i1 . . . i� . . .〉 and j = | . . . j1 . . . j� . . .〉
(each of ik and jk is 1). Since � <

⌊
N
2

⌋
, there will be some terms |i〉〈j | in the density

matrix, the coefficients (rij or ai āj ) of which will never occur in any (�+1)-partite marginal.
For example, the coefficient of |000 . . . 011〉〈110 . . . 0|, or |010 . . . 01〉〈100 . . . 010| will
never appear in any tripartite marginal. Generically, those rij’s (i < j) for which the
Hamming distance between BN(i) and BN(j) is greater than � + 1 will never occur in any
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(� + 1)-partite marginal; because partial tracing over the remaining parties will yield 0.
Thus, the elements rij’s with j = ī=complement of i ≡ 2N − 1 − i (these are the elements
on the secondary diagonal of the density matrix) will never occur.

Since these rij’s never occur in any (� + 1)-partite marginal, these are unconstrained
elements (i.e. these can take any values and need not be ai āj , which is required for the
uniqueness of the two density matrices). So, there exists an infinite number of 2N × 2N

Hermitian, unit-trace matrices sharing the same diagonals and (� + 1)-partite marginals
with

∣∣GD
(�)
N

〉〈GD
(�)
N |. However, all such matrices may not be valid density matrices

because of the semi-positivity restriction (ρ � 0). So, for some particular choices
of the coefficients ai’s, there may (or may not) exist a valid density matrix other than∣∣GD

(�)
N

〉〈
GD

(�)
N

∣∣. Therefore, there is an ambiguity about the general case: what is the

minimum number of parties whose RDM’s can generically determine the
∣∣GD

(�)
N

〉
state

uniquely?
(4) To answer this question, we observe that the possible maximum Hamming distance

between BN(i) and BN(j) is 2�. Therefore, if we consider the 2�-partite marginals,
each rij will appear in some RDMs and hence should be constrained to satisfy some
relation with ai’s. We shall now show that considering 2�-partite marginals indeed yield
rij = ai āj .

To prove it, consider a non-diagonal element rij with i = |i1i2 . . . iN 〉 and j = |j1j2 . . . jN 〉.
Let the � 1’s in i be at Ikth places (counting from left to right) and those in j are at Jkth places.
If the two sets {Ik} and {Jk} are different (i.e. {Ik} ∩ {Jk} = �), then we get a set of 2� number
of parties {Ik, Jk} and we can arrange all Ik and Jk’s (since Ik, Jk ∈ {1, 2, . . . , N}) in increasing
order. Let us call them {Pk} (i.e. P1 < P2 < . . . < P2�). If {Ik} ∩ {Jk} �= �, we can add
any number(s) from {1, 2, . . . , N} to the set {Pk} (maintaining the order) so that it contains 2�

number of elements. Let sk be the Pkth bit (from left to right) in BN(i) and those in BN(j)

be tk. Then comparing the coefficient of |s1s2 . . . s2�〉〈t1t2 . . . t2�| from the RDMs ρP1P2...P2� , it
follows that rij = ai āj and hence the proof. �

Remark 2. It is worth mentioning that theorem 2 can be viewed as a sufficient condition. It
states that it is sufficient to consider the 2�-partite marginals to determine

∣∣GD
(�)
N

〉
. However,

it may happen (e.g. for some specific state in this class) that the state
∣∣GD

(�)
N

〉
can be

determined from fewer than 2�-partite marginals. In this sense, we do not know whether
this is an optimal bound. We have used the 2�-partite marginals to drive out the possibility
of the presence of another density matrix having different off-diagonals but sharing the same
diagonals. The off-diagonals rij are arbitrary but are constrained to satisfy the requirement
that the resulting matrix should be PSD. This automatically puts some restrictions on the
off-diagonals e.g. |rij | � √

riirjj . There is a possibility of reducing the number of parties
using some further properties of density (PSD) matrices (or using some different techniques).
In the present technique, 2�-partite marginals are sufficient. A limitation of the present
technique is that if the maximum Hamming distance (between the bases) is N, then it gives
the trivial result. In the case � = ⌊

N
2

⌋
, for odd N, the technique supports the result of

[2] and for even N, it gives no useful result. That is why we have excluded this case in
theorem 2.

Another interesting issue is the number of RDMs needed to identify a state. For example,
it has been shown by Diosi [4] that among pure states, only two (out of three) bipartite
marginals are sufficient to determine a generic 3-qubit pure state (GHZ and its LU equivalents
are the only exception). If we restrict ourselves only to pure states, then the number of
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RDMs can be considerably reduced. The result is stated more precisely in the following
theorem.

Theorem 3. Among arbitrary pure states, the generalized Dicke state
∣∣GD

(�)
N

〉
is uniquely

determined by its (� + 1)-partite marginals. Moreover, only N−1C� (out of NC�+1) number of
them having one party common to all are sufficient.

Proof. Let us take the first party as the common one and consider the following RDMs
ρ1i2i3...i�+1 . The proof for diagonal part has already been established in the first part of
theorem 2. The proof for the non-diagonal part follows by comparing the coefficients of
|B�+1(i)〉〈B�+1(j)|, where |B�+1(i)〉 and |B�+1(j)〉 have exactly � number of 1s. �

Remark 3. We wish to mention here that as we are considering the most general class of
Dicke states, it is not possible to determine the states from fewer than (�+1)-partite marginals.
It may happen that for some specific choices of the coefficients,

∣∣GD
(�)
N

〉
is uniquely determined

from fewer than (� + 1)-partite marginals, but in general, not all states can be determined. For
example, the following two states:∣∣GD

(2)
4

〉 = r3 eiθ3(|3〉 + |12〉) + r5 eiθ5(|5〉 + |10〉) + r6 eiθ6(|6〉 + |9〉)
and

∣∣GD
(2)′
4

〉 = r3 e−iθ3(|3〉 + |12〉) + r5 e−iθ5(|5〉 + |10〉) + r6 e−iθ6(|6〉 + |9〉)
are not determinable since they share the same bipartite marginals [ri, θi are real and the base
|x〉 should be read as |B4(x)〉].

4. Generalization to d-dimension

The generalized d-dimensional Dicke states are defined by

|DN(k0, k1, . . . , kd−1)〉 =
∑

i

ci |i〉 (13)

where

i = | 0 . . . 0︸ ︷︷ ︸
k0

1 . . . 1︸ ︷︷ ︸
k1

. . . d − 1 . . . d − 1︸ ︷︷ ︸
kd−1

〉 (14)

and the index i varies over all possible different permutations of k0 number of 0, k1 number of
1, . . . , kd−1 number of d − 1; k0 + k1 + · · · + kd−1 = N . These states are genuinely entangled.
Using the same technique as in the proof of theorem 2, we can prove the following result about
the reducible correlations in these states.

Theorem 4. If K(≡2m < N) be the maximum Hamming distance between the bases (14),
the state given by (13) is uniquely determined by its K-partite RDMs.

As an example, any state of the class |D2009(2004, 2, 3)〉 is determined by its 10-partite
RDMs.

5. Quantum marginal problem

The basic issue concerning the quantum marginal problem (QMP) is the following: does there
exist a joint quantum state consistent with a given set of RDMs? It is known that a general
solution to the QMP would provide a solution to the N-representability problem in quantum
chemistry, e.g. to calculate the binding energies of complex molecules [10]. A particular class
of QMP is ‘symmetric extension’, which has a direct application in quantum key sharing,
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quantum cryptography, etc [11]. Although plenty of literature is available [12], there is no
general method to get the exact solutions. One needs to calculate the marginals from an
arbitrary state (which is the expected joint state) and then compare with the given ones. For
a large number of marginals, the problem becomes very difficult as we need to solve several
complex equations. However, if there is some symmetry in the RDMs (e.g. for W -states
and Dicke states, all RDMs have similar form with many vanishing elements), the technique
presented in our work can be applied to find a solution. As an interesting example, it was
mentioned in [1] that for the set of RDMs {ρAB, ρBC, ρAC} where (in computational basis)

ρAB = ρBC = ρAC = |ψ−〉〈ψ−| (15)

(with |ψ−〉 = (|01〉 − |10〉)/√2) there exists no consistent 3-qubit state. We can prove this
easily using our technique. If possible, let

ρABC =
7∑

i=0

7∑
j=i

rij |B3(i)〉〈B3(j)| (16)

where B3(x) =‘Binary representation of x in a 3-bit string’ has the given marginals. Then
comparing the first and last diagonal elements (i.e. the coefficients of |00〉〈00| and |11〉〈11|)
of the RDMs, we get rii = 0 ∀i = 0(1)7, an impossibility!

6. Conclusions

Though the general framework is still far way, through this work we have made considerable
progress towards understanding the nature of reducible correlations. It has been shown that
the correlations in some classes of multipartite states can be reduced to lower order ones.
This provides some insight into the characterization of multiparty entanglement, such as the
determination of generalized W -state from its bipartite RDMs proves that the entanglement
therein is necessarily of bipartite nature. The large class of generalized Dicke states

∣∣GD
(�)
N

〉
has shown to be determined by their 2�-partite marginals, where 1 � � <

⌊
N
2

⌋
. Thus,

these states have information at the most at 2�-partite level and it cannot be reduced beyond
(� + 1)-partite level.

In general, the entangled states which are determined by their K-party RDMs can be used
as resources for performing information related tasks, specially if some of the parties do not
cooperate. In such situations, it is not necessary that each party cooperates with all others;
cooperation with only K − 1 parties is required. The K-partite residual entanglement would
serve the purpose. For example, because of the bipartite nature of entanglement, the N-qubit
W -state is very robust against the loss of (N − 2) parties.

Recently, it has been shown that (N − 1)-qudit RDMs uniquely determine the Groverian
measure of entanglement of the N-qudit pure state [13]. So it is likely that for the pure
states, which are determined by their K-partite RDMs, the entanglement measure may be
characterized by these RDMs. However, this requires further investigation.

Finally, we have shown by an example that our approach can be applied to quantum
marginal problem, at least for simple (low-dimensional) cases.

References

[1] Linden N, Popescu S and Wootters W K 2002 Phys. Rev. Lett. 89 207901
[2] Walck S N and Lyons D W 2008 Phys. Rev. Lett. 100 050501

Walck S N and Lyons D W 2009 Phys. Rev. A 79 032326
[3] Parashar P and Rana S 2009 Phys. Rev. A 80 012319

10

http://dx.doi.org/10.1103/PhysRevLett.89.207901
http://dx.doi.org/10.1103/PhysRevLett.100.050501
http://dx.doi.org/10.1103/PhysRevA.79.032326
http://dx.doi.org/10.1103/PhysRevA.80.012319


J. Phys. A: Math. Theor. 42 (2009) 462003 Fast Track Communication

[4] Linden N and Wootters W K 2002 Phys. Rev. Lett. 89 277906
Diosi L 2004 Phys. Rev. A 70 010302
Jones N S and Linden N 2005 Phys. Rev. A 71 012324
Zhou D L 2008 Phys. Rev. Lett. 101 180505
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